ただ今実施中のプロモーション | 詳細はこちら >>
65221
Acetyl-Histone H2B (Lys5) (D5H1S) XP® Rabbit mAb (PE Conjugate)
Antibody Conjugates

Acetyl-Histone H2B (Lys5) (D5H1S) XP® Rabbit mAb (PE Conjugate) #65221

現在発売の準備をしております。次回新発売までお待ちください。

APPLICATIONS

REACTIVITY SENSITIVITY MW (kDa) Isotype
H M R Mk Endogenous Rabbit IgG
Flow Cytometry

Flow cytometric analysis of HeLa cells, untreated (blue) or treated with Vorinostat (SAHA) #12520 (2 μM, 16 hr; green), using Acetyl-Histone H2B (Lys5) (D5H1S) XP® Rabbit mAb (PE Conjugate) (solid lines) compared to concentration-matched Rabbit (DA1E) mAb IgG XP® Isotype Control (PE Conjugate) #5742 (dashed lines).

Learn more about how we get our images.

Flow Cytometry, Methanol Permeabilization Protocol for Direct Conjugates

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L 1X PBS: add 50 ml 20X PBS to 950 ml dH2O, mix.
  2. 16% Formaldehyde (methanol free).
  3. 100% methanol.
  4. Incubation Buffer: Dissolve 0.5 g Bovine Serum Albumin (BSA) (#9998) in 100 ml 1X PBS. Store at 4°C.

B. Fixation

NOTE: If using whole blood, lyse red blood cells and wash by centrifugation prior to fixation.

  1. Collect cells by centrifugation and aspirate supernatant.
  2. Resuspend cells in 0.5-1 ml 1X PBS. Add formaldehyde to obtain a final concentration of 4%.
  3. Fix for 15 min at room temperature.
  4. Wash by centrifugation with excess 1X PBS. Discard supernatant in appropriate waste container. Resuspend cells in 0.5-1 ml 1X PBS.

C. Permeabilization

  1. Permeabilize cells by adding ice-cold 100% methanol slowly to pre-chilled cells, while gently vortexing, to a final concentration of 90% methanol.
  2. Incubate 30 min on ice.
  3. Proceed with immunostaining (Section D) or store cells at -20°C in 90% methanol.

D. Immunostaining

  1. Aliquot desired number of cells into tubes or wells.
  2. Wash cells by centrifugation in excess 1X PBS to remove methanol. Discard supernatant in appropriate waste container. Repeat if necessary.
  3. Resuspend cells in 100 µl of diluted antibody conjugate (prepared in incubation buffer at the recommended dilution).
  4. Incubate for 1 hr at room temperature. Protect from light.
  5. Wash by centrifugation in incubation buffer. Discard supernatant. Repeat.
  6. Resuspend cells in 1X PBS and analyze on flow cytometer; alternatively, for DNA staining, proceed to optional DNA stain (Section E).

E. Optional DNA Dye

  1. Resuspend cells in 0.5 ml of DNA dye (e.g. Propidium Iodide (PI)/RNase Staining Solution #4087).
  2. Incubate for at least 5 min at room temperature.
  3. Analyze cells in DNA staining solution on flow cytometer.

posted July 2009

revised June 2017

Protocol Id: 407

Application Dilutions
Flow Cytometry 1:50
Storage:

Supplied in PBS (pH 7.2), less than 0.1% sodium azide and 2 mg/ml BSA. Store at 4°C. Do not aliquot the antibody. Protect from light. Do not freeze.

Acetyl-Histone H2B (Lys5) (D5H1S) XP® Rabbit mAb (PE Conjugate) recognizes endogenous levels of histone H2B only when acetylated at Lys5. This antibody does not cross-react with other acetylated histones.

Species Reactivity:

Human, Mouse, Rat, Monkey

Species predicted to react based on 100% sequence homology:

Hamster, Chicken, Zebrafish, Bovine, Horse

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding acetylated Lys5 of human histone H2B protein.

This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Acetyl-Histone H2B (Lys5) (D5H1S) XP® Rabbit mAb #12799.

The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1,2). The p300/CBP histone acetyltransferases acetylate multiple lysine residues in the amino terminal tail of histone H2B (Lys5, 12, 15, and 20) at gene promoters during transcriptional activation (1-3). Hyper-acetylation of the histone tails neutralizes the positive charge of these domains and is believed to weaken histone-DNA and nucleosome-nucleosome interactions, thereby destabilizing chromatin structure and increasing the access of DNA to various DNA-binding proteins (4,5). In addition, acetylation of specific lysine residues creates docking sites that facilitate recruitment of many transcription and chromatin regulatory proteins that contain a bromodomain, which binds to acetylated lysine residues (6). Histone H2B is mono-ubiquitinated at Lys120 during transcriptional activation by the RAD6 E2 protein in conjunction with the BRE1A/BRE1B E3 ligase (also known as RNF20/RNF40) (7). Mono-ubiquitinated histone H2B Lys120 is associated with the transcribed region of active genes and stimulates transcriptional elongation by facilitating FACT-dependent chromatin remodeling (7-9). In addition, it is essential for subsequent methylation of histone H3 Lys4 and Lys79, two additional histone modifications that regulate transcriptional initiation and elongation (10). In response to metabolic stress, AMPK is recruited to responsive genes and phosphorylates histone H2B at Lys36, both at promoters and in transcribed regions of genes, and may regulate transcriptional elongation (11). In response to multiple apoptotic stimuli, histone H2B is phosphorylated at Ser14 by the Mst1 kinase (12). Upon induction of apoptosis, Mst1 is cleaved and activated by caspase-3, leading to global phosphorylation of histone H2B during chromatin condensation. Interestingly, histone H2B is rapidly phosphorylated at irradiation-induced DNA damage foci in mouse embryonic fibroblasts (13). In this case, phosphorylation at Ser14 is rapid, depends on prior phosphorylation of H2AX Ser139, and occurs in the absence of apoptosis, suggesting that Ser14 phosphorylation may have distinct roles in DNA-damage repair and apoptosis.

  1. Peterson, C.L. and Laniel, M.A. (2004) Curr Biol 14, R546-51.
  2. Jaskelioff, M. and Peterson, C.L. (2003) Nat Cell Biol 5, 395-9.
  3. Roth, S.Y. et al. (2001) Annu Rev Biochem 70, 81-120.
  4. Workman, J.L. and Kingston, R.E. (1998) Annu Rev Biochem 67, 545-79.
  5. Hansen, J.C. et al. (1998) Biochemistry 37, 17637-41.
  6. Yang, X.J. (2004) Bioessays 26, 1076-87.
  7. Kim, J. et al. (2009) Cell 137, 459-71.
  8. Minsky, N. et al. (2008) Nat Cell Biol 10, 483-8.
  9. Pavri, R. et al. (2006) Cell 125, 703-17.
  10. Shilatifard, A. (2006) Annu Rev Biochem 75, 243-69.
  11. Bungard, D. et al. (2010) Science 329, 1201-5.
  12. Cheung, W.L. et al. (2003) Cell 113, 507-17.
  13. Fernandez-Capetillo, O. et al. (2004) J Exp Med 199, 1671-7.
Entrez-Gene Id
3018
Swiss-Prot Acc.
P33778
For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
XP is a registered trademark of Cell Signaling Technology, Inc.

Upstream / Downstream

pathwayImage

Explore pathways related to this product.

To Purchase # 65221S

View sizes
製品番号 サイズ 価格 在庫
65221S
100 µl  (50 tests)

Your Local Representative for Japan

Cell Signaling Technology Japan, K.K.

10F Kasahara Building, 1-6-10 Uchikanda

Chiyoda-ku, Tokyo 101-0047

Phone:
03 (3295) 1630
Fax:
03 (3295) 1633
Email:
infojp@cellsignal.com
URL:
www.cellsignal.jp

Need information for a different country? Please click here.

To get local purchase information on this product, click here.

Powered By OneLink