ただ今実施中のプロモーション | 詳細はこちら >>
66277
SQSTM1/p62 (D5L7G) Mouse mAb (Alexa Fluor® 488 Conjugate)
Antibody Conjugates

SQSTM1/p62 (D5L7G) Mouse mAb (Alexa Fluor® 488 Conjugate) #66277

This product is discontinued

Storage:

Supplied in PBS (pH 7.2), less than 0.1% sodium azide and 2 mg/ml BSA. Store at 4°C. Do not aliquot the antibody. Protect from light. Do not freeze.

SQSTM1/p62 (D5L7G) Mouse mAb (Alexa Fluor® 488 Conjugate) recognizes endogenous levels of total SQSTM1/p62 protein.

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Pro220 of human SQSTM1 protein.

This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated SQSTM1/p62 (D5L7G) Mouse mAb #88588.

Sequestosome 1 (SQSTM1, p62) is a ubiquitin binding protein involved in cell signaling, oxidative stress, and autophagy (1-4). It was first identified as a protein that binds to the SH2 domain of p56Lck (5) and independently found to interact with PKCζ (6,7). SQSTM1 was subsequently found to interact with ubiquitin, providing a scaffold for several signaling proteins and triggering degradation of proteins through the proteasome or lysosome (8). Interaction between SQSTM1 and TRAF6 leads to the K63-linked polyubiquitination of TRAF6 and subsequent activation of the NF-κB pathway (9). Protein aggregates formed by SQSTM1 can be degraded by the autophagosome (4,10,11). SQSTM1 binds autophagosomal membrane protein LC3/Atg8, bringing SQSTM1-containing protein aggregates to the autophagosome (12). Lysosomal degradation of autophagosomes leads to a decrease in SQSTM1 levels during autophagy; conversely, autophagy inhibitors stabilize SQSTM1 levels. Studies have demonstrated a link between SQSTM1 and oxidative stress. SQSTM1 interacts with KEAP1, which is a cytoplasmic inhibitor of NRF2, a key transcription factor involved in cellular responses to oxidative stress (3). Thus, accumulation of SQSTM1 can lead to an increase in NRF2 activity.

  1. Kirkin, V. et al. (2009) Mol Cell 34, 259-69.
  2. Seibenhener, M.L. et al. (2007) FEBS Lett 581, 175-9.
  3. Komatsu, M. et al. (2010) Nat Cell Biol 12, 213-23.
  4. Bjørkøy, G. et al. Autophagy 2, 138-9.
  5. Joung, I. et al. (1996) Proc Natl Acad Sci U S A 93, 5991-5.
  6. Sanchez, P. et al. (1998) Mol Cell Biol 18, 3069-80.
  7. Puls, A. et al. (1997) Proc Natl Acad Sci U S A 94, 6191-6.
  8. Vadlamudi, R.K. et al. (1996) J Biol Chem 271, 20235-7.
  9. Wooten, M.W. et al. (2005) J Biol Chem 280, 35625-9.
  10. Bjørkøy, G. et al. (2005) J Cell Biol 171, 603-14.
  11. Komatsu, M. et al. (2007) Cell 131, 1149-63.
  12. Pankiv, S. et al. (2007) J Biol Chem 282, 24131-45.
Entrez-Gene Id
8878
Swiss-Prot Acc.
Q13501
For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
Alexa Fluor is a registered trademark of Life Technologies Corporation.
DRAQ5 is a registered trademark of Biostatus Limited.
DyLight is a trademark of Thermo Fisher Scientific, Inc. and its subsidiaries.
The Alexa Fluor dye conjugates in this product are sold under license from Life Technologies Corporation, for research use only excluding use in combination with DNA microarrays and high content screening (HCS).
This product is provided under an intellectual property license from Life Technologies Corporation. The transfer of this product is conditioned on the buyer using the purchased product solely in research conducted by the buyer, excluding contract research or any fee for service research, and the buyer must not (1) use this product or its components for (a) diagnostic, therapeutic or prophylactic purposes; (b) testing, analysis or screening services, or information in return for compensation on a per-test basis; or (c) manufacturing or quality assurance or quality control, and/or (2) sell or transfer this product or its components for resale, whether or not resold for use in research. For information on purchasing a license to this product for purposes other than as described above, contact Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, CA 92008 USA or outlicensing@lifetech.com.

Upstream / Downstream

pathwayImage

Explore pathways related to this product.

Your Local Representative for Japan

Cell Signaling Technology Japan, K.K.

10F Kasahara Building, 1-6-10 Uchikanda

Chiyoda-ku, Tokyo 101-0047

Phone:
03 (3295) 1630
Fax:
03 (3295) 1633
Email:
infojp@cellsignal.com
URL:
www.cellsignal.jp

Need information for a different country? Please click here.

To get local purchase information on this product, click here.

Powered By OneLink