Revision 1

#8357Store at -20C

1 Kit

(8 x 20 microliters)

Cell Signaling Technology

Orders: 877-616-CELL (2355) [email protected]

Support: 877-678-TECH (8324)

Web: [email protected] cellsignal.com

3 Trask LaneDanversMassachusetts01923USA
For Research Use Only. Not for Use in Diagnostic Procedures.
Product Includes Product # Quantity Mol. Wt Isotype/Source
Phospho-MAPKAPK-2 (Thr334) (27B7) Rabbit mAb 3007 20 µl 49 kDa Rabbit IgG
Phospho-HSP27 (Ser82) (D1H2F6) XP® Rabbit mAb 9709 20 µl 27 kDa Rabbit IgG
Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit mAb 4668 20 µl 46, 54 kDa Rabbit IgG
Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb 3270 20 µl 48 kDa Rabbit IgG
Phospho-p53 (Ser15) (16G8) Mouse mAb 9286 20 µl 53 kDa Mouse IgG1
Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb 9664 20 µl 17, 19 kDa Rabbit IgG
Cleaved PARP (Asp214) (D64E10) XP® Rabbit mAb 5625 20 µl 89 kDa Rabbit IgG
Phospho-p38 MAPK (Thr180/Tyr182) (D3F9) XP® Rabbit mAb 4511 20 µl 43 kDa Rabbit IgG
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl Goat 
Anti-mouse IgG, HRP-linked Antibody 7076 100 µl Horse 

Please visit cellsignal.com for individual component applications, species cross-reactivity, dilutions, protocols, and additional product information.

Description

The Stress and Apoptosis Antibody Sampler Kit provides an economical means of evaluating stress and apoptotic responses of each protein. The kit contains enough primary and secondary antibody to perform two western blot experiments per primary antibody.

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Background

Cells respond to environmental or intracellular stresses through various mechanisms ranging from initiation of prosurvival strategies to activation of cell death pathways that remove damaged cells from the organism. Many of the proteins and cellular processes involved in normal signaling and survival pathways also play dual roles in cell death-promoting mechanisms. Apoptosis is a regulated cellular suicide mechanism characterized by nuclear condensation, cell shrinkage, membrane blebbing, and DNA fragmentation. Caspase-3 (CPP-32, Apoptain, Yama, SCA-1) is a critical executioner of apoptosis, as it is either partially or totally responsible for the proteolytic cleavage of many key proteins such as the nuclear enzyme poly (ADP-ribose) polymerase (PARP) (1). PARP appears to be involved in DNA repair in response to environmental stress (2). This protein can be cleaved by many ICE-like caspases in vitro (3,4) and is one of the main cleavage targets of caspase-3 in vivo (5,6). PARP helps cells to maintain their viability; cleavage of PARP facilitates cellular disassembly and serves as a marker of cells undergoing apoptosis (7). The p53 tumor suppressor protein plays a major role in cellular response to DNA damage and other genomic aberrations. Activation of p53 can lead to either cell cycle arrest and DNA repair or apoptosis (8). DNA damage induces phosphorylation of p53 at Ser15 and Ser20 and leads to a reduced interaction between p53 and its negative regulator, the oncoprotein MDM2 (9). MDM2 inhibits p53 accumulation by targeting it for ubiquitination and proteasomal degradation (10,11). Stress-activated protein kinases (SAPK)/Jun amino-terminal kinases (JNK) are members of the MAPK family that are activated by a variety of environmental stresses, inflammatory cytokines, growth factors, and GPCR agonists. Stress signals are delivered to this cascade by small GTPases of the Rho family (Rac, Rho, cdc42) (12). SAPK/JNK, when active as a dimer, can translocate to the nucleus and regulate transcription through its effects on c-Jun, ATF-2, and other transcription factors (12,13). c-Jun is a member of the Jun Family, containing c-Jun, JunB, and JunD, and is a component of the transcription factor AP-1 (activator protein-1). Extracellular signals from growth factors, chemokines, and stress activate AP-1-dependent transcription. The transcriptional activity of c-Jun is regulated by phosphorylation at Ser63 and Ser73 through SAPK/JNK (reviewed in 14). AP-1 regulated genes exert diverse biological functions including cell proliferation, differentiation, and apoptosis, as well as transformation, invasion and metastasis, depending on cell type and context (13, 15-17). p38 MAP kinase (MAPK), also called RK (18) or CSBP (19), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (17-20). MKK3, MKK6, and SEK activate p38 MAP kinase by phosphorylation at Thr180 and Tyr182. MAPKAPK-2 is a direct target of p38 MAPK (17). Multiple residues of MAPKAPK-2 are phosphorylated in vivo in response to stress. However, only four residues (Thr25, Thr222, Ser272 and Thr334) are phosphorylated by p38 MAPK in an in vitro kinase assay (21). Phosphorylation at Thr222, Ser272, and Thr334 appears to be essential for the activity of MAPKAPK-2 (6). Heat shock protein (HSP) 27 is one of the small HSPs that are constitutively expressed at different levels in various cell types and tissues. In response to stress, the expression level of HSP27 increases several-fold to confer cellular resistance to the adverse environmental change. HSP27 is phosphorylated at Ser15, Ser78, and Ser82 by MAPKAPK-2 as a result of the activation of the p38 MAP kinase pathway (19,22).

  1. Fernandes-Alnemri, T. et al. (1994) J Biol Chem 269, 30761-4.
  2. Satoh, M.S. and Lindahl, T. (1992) Nature 356, 356-8.
  3. Lazebnik, Y.A. et al. (1994) Nature 371, 346-7.
  4. Cohen, G.M. (1997) Biochem J 326 ( Pt 1), 1-16.
  5. Nicholson, D.W. et al. (1995) Nature 376, 37-43.
  6. Tewari, M. et al. (1995) Cell 81, 801-9.
  7. Oliver, F.J. et al. (1998) J Biol Chem 273, 33533-9.
  8. Levine, A.J. (1997) Cell 88, 323-31.
  9. Shieh, S.Y. et al. (1997) Cell 91, 325-34.
  10. Chehab, N.H. et al. (1999) Proc Natl Acad Sci U S A 96, 13777-82.
  11. Honda, R. et al. (1997) FEBS Lett 420, 25-7.
  12. Kyriakis, J.M. and Avruch, J. (2001) Physiol Rev 81, 807-69.
  13. Leppä, S. and Bohmann, D. (1999) Oncogene 18, 6158-62.
  14. Davis, R.J. (2000) Cell 103, 239-52.
  15. Shaulian, E. and Karin, M. (2002) Nat Cell Biol 4, E131-6.
  16. Weiss, C. and Bohmann, D. (2004) Cell Cycle 3, 111-3.
  17. Rouse, J. et al. (1994) Cell 78, 1027-37.
  18. Han, J. et al. (1994) Science 265, 808-11.
  19. Lee, J.C. et al. Nature 372, 739-46.
  20. Freshney, N.W. et al. (1994) Cell 78, 1039-49.
  21. Ben-Levy, R. et al. (1995) EMBO J 14, 5920-30.
  22. Landry, J. et al. (1992) J Biol Chem 267, 794-803.

Background References

    Trademarks and Patents

    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit cellsignal.com/trademarks for more information.

    使用に関する制限

    法的な権限を与えられたCSTの担当者が署名した書面によって別途明示的に合意された場合を除き、 CST、その関連会社または代理店が提供する製品には以下の条件が適用されます。お客様が定める条件でここに定められた条件に含まれるものを超えるもの、 または、ここに定められた条件と異なるものは、法的な権限を与えられたCSTの担当者が別途書面にて受諾した場合を除き、拒絶され、 いかなる効力も効果も有しません。

    研究専用 (For Research Use Only) またはこれに類似する表示がされた製品は、 いかなる目的についても FDA または外国もしくは国内のその他の規制機関により承認、認可または許可を受けていません。 お客様は製品を診断もしくは治療目的で使用してはならず、また、製品に表示された内容に違反する方法で使用してはなりません。 CST が販売または使用許諾する製品は、エンドユーザーであるお客様に対し、使途を研究および開発のみに限定して提供されるものです。 診断、予防もしくは治療目的で製品を使用することまたは製品を再販売 (単独であるか他の製品等の一部であるかを問いません) もしくはその他の商業的利用の目的で購入することについては、CST から別途許諾を得る必要があります。 お客様は以下の事項を遵守しなければなりません。(a) CST の製品 (単独であるか他の資材と一緒であるかを問いません) を販売、使用許諾、貸与、寄付もしくはその他の態様で第三者に譲渡したり使用させたりしてはなりません。また、商用の製品を製造するために CST の製品を使用してはなりません。(b) 複製、改変、リバースエンジニアリング、逆コンパイル、 分解または他の方法により製品の構造または技術を解明しようとしてはなりません。また、 CST の製品またはサービスと競合する製品またはサービスを開発する目的で CST の製品を使用してはなりません。(c) CST の製品の商標、商号、ロゴ、特許または著作権に関する通知または表示を除去したり改変したりしてはなりません。(d) CST の製品をCST 製品販売条件(CST’s Product Terms of Sale) および該当する書面のみに従って使用しなければなりません。(e) CST の製品に関連してお客様が使用する第三者の製品またはサービスに関する使用許諾条件、 サービス提供条件またはこれに類する合意事項を遵守しなければなりません。

    Revision 1
    #8357

    Stress and Apoptosis Antibody Sampler Kit

    Stress and Apoptosis Antibody Sampler Kit: Image 1 Expand Image
    Simple Western™ analysis of lysates (1.0 mg/mL) from HEK 293 cells treated with UV (50 mJ, 30 min recovery) using Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit mAb #4668. The virtual lane view (left) shows two target bands (as indicated) at 1:10 and 1:50 dilutions of primary antibody. The corresponding electropherogram view (right) plots chemiluminescence by molecular weight along the capillary at 1:10 (blue line) and 1:50 (green line) dilutions of primary antibody. This experiment was performed under reducing conditions on the Jess™ Simple Western instrument from ProteinSimple, a BioTechne brand, using the 12-230 kDa separation module.
    Stress and Apoptosis Antibody Sampler Kit: Image 2 Expand Image
    Simple Western™ analysis of lysates (1 mg/mL) from Jurkat cells treated with Etoposide (25 μM, 5 hours) using Cleaved PARP (Asp214) (D64E10) XP® Rabbit mAb #5625. The virtual lane view (left) shows a single target band (as indicated) at 1:10 and 1:50 dilutions of primary antibody. The corresponding electropherogram view (right) plots chemiluminescence by molecular weight along the capillary at 1:10 (blue line) and 1:50 (green line) dilutions of primary antibody. This experiment was performed under reducing conditions on the Jess™ Simple Western instrument from ProteinSimple, a BioTechne brand, using the 12-230 kDa separation module.
    Stress and Apoptosis Antibody Sampler Kit: Image 3 Expand Image
    Simple Western™ analysis of lysates (0.1 mg/mL) from Jurkat cells treated with Cytochrome C using Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb #9664. The virtual lane view (left) shows the target bands (as indicated) at 1:10 and 1:50 dilutions of primary antibody. The corresponding electropherogram view (right) plots chemiluminescence by molecular weight along the capillary at 1:10 (blue line) and 1:50 (green line) dilutions of primary antibody. This experiment was performed under reducing conditions on the Jess™ Simple Western instrument from ProteinSimple, a BioTechne brand, using the 12-230 kDa separation module.
    Stress and Apoptosis Antibody Sampler Kit: Image 4 Expand Image
    Western blot analysis of extracts from untreated or UV+TPA-treated HeLa and COS cells, using Phospho-MAPKAPK-2 (Thr334) (27B7) Rabbit mAb (upper), or MAPKAPK-2 Antibody #3042 (lower).
    Stress and Apoptosis Antibody Sampler Kit: Image 5 Expand Image
    Western blot analysis of extracts from NIH/3T3 or C6 cells, untreated or UV-treated, using Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb (upper) or c-Jun (60A8) Rabbit mAb #9165 (lower).
    Stress and Apoptosis Antibody Sampler Kit: Image 6 Expand Image
    CUT&RUN was performed with PC-12 cells starved overnight and treated with Human β-Nerve Growth Factor (hβ-NGF) #5221 (50 ng/ml) for 2h and Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb, using CUT&RUN Assay Kit #86652. DNA Library was prepared using DNA Library Prep Kit for Illumina® (ChIP-seq, CUT&RUN) #56795. The figure shows binding across Lmna, a known target gene of Phospho-c-Jun (see additional figure containing CUT&RUN-qPCR data).
    Stress and Apoptosis Antibody Sampler Kit: Image 7 Expand Image
    Western blot analysis of extracts from COS and 293 cells, untreated or UV-treated, using Phospho-p38 MAPK (Thr180/Tyr182) (D3F9) XP® Rabbit mAb (upper) or p38 MAPK Antibody #9212 (lower).
    Stress and Apoptosis Antibody Sampler Kit: Image 8 Expand Image
    Western blot analysis of extracts from 293 cells, untreated or UV-treated, NIH/3T3 cells, untreated or UV-treated and C6 cells, untreated or anisomycin-treated, using Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 9 Expand Image
    Western blot analysis of extracts from HeLa cells, untreated or treated with Staurosporine #9953 (1 μM, 3 hr), Jurkat cells, untreated or etoposide-treated (25 μM, overnight), and THP-1 cells, untreated or cycloheximide-treated (CHX, 10 μg/ml, overnight) followed by treatment with TNF-α #8902 (20 ng/ml, 4 hr), using Cleaved PARP (Asp214) (D64E10) XP® Rabbit mAb (upper), or total PARP Antibody #9542 (lower).
    Stress and Apoptosis Antibody Sampler Kit: Image 10 Expand Image
    After the primary antibody is bound to the target protein, a complex with HRP-linked secondary antibody is formed. The LumiGLO® is added and emits light during enzyme catalyzed decomposition.
    Stress and Apoptosis Antibody Sampler Kit: Image 11 Expand Image
    After the primary antibody is bound to the target protein, a complex with HRP-linked secondary antibody is formed. The LumiGLO* is added and emits light during enzyme catalyzed decomposition.
    Stress and Apoptosis Antibody Sampler Kit: Image 12 Expand Image
    Western blot analysis of extracts from HT29 cells, untreated or UV-treated (100 mJ/cm2, 1 hr), using Phospho-p53 (Ser15) (16G8) Mouse mAb (upper) or p53 (DO-7) Mouse mAb #48818 (lower).
    Stress and Apoptosis Antibody Sampler Kit: Image 13 Expand Image
    Western blot analysis of extracts from C6 (rat), NIH/3T3 (mouse), and Jurkat (human) cells, untreated or treated with staurosporine #9953 (1uM, 3hrs) or etoposide #2200 (25uM, 5hrs) as indicated, using Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 14 Expand Image
    Western blot analysis of extracts from HeLa or HT-29 cells, untreated (-) or treated (+) with either UV (40 mJ/cm2 with 30 min recovery) or anisomycin (25 μg/mL, 30 min), using Phospho-HSP27 (Ser82) (D1H2F6) XP® Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 15 Expand Image
    Immunohistochemical analysis of paraffin-embedded human breast carcinoma, control (left) or lambda phosphatase-treated (right), using Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 16 Expand Image
    CUT&RUN was performed with PC-12 cells starved overnight and treated with Human β-Nerve Growth Factor (hβ-NGF) #5221 (50 ng/ml) for 2h and Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb, using CUT&RUN Assay Kit #86652. DNA Library was prepared using DNA Library Prep Kit for Illumina® (ChIP-seq, CUT&RUN) #56795. The figures show binding across chromosome 2 (upper), including Lmna (lower), a known target gene of Phospho-c-Jun (see additional figure containing CUT&RUN-qPCR data).
    Stress and Apoptosis Antibody Sampler Kit: Image 17 Expand Image
    Immunohistochemical analysis of paraffin-embedded human colon carcinoma using Phospho-p38 MAPK (Thr180/Tyr182) (D3F9) XP® Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 18 Expand Image
    Immunohistochemical analysis of paraffin-embedded human lung carcinoma using Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit mAb in the presence of control peptide (left) or Phospho-SAPK/JNK (Thr183/Tyr185) Blocking Peptide #1215 (right).
    Stress and Apoptosis Antibody Sampler Kit: Image 19 Expand Image
    Immunohistochemical analysis of paraffin-embedded human tonsil using Cleaved PARP (Asp214) (D64E10) XP® Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 20 Expand Image
    Immunoprecipitation of extracts from Jurkat cells, untreated or etoposide-treated (25uM, 5hrs), using Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb. Western blot was performed using the same antibody.
    Stress and Apoptosis Antibody Sampler Kit: Image 21 Expand Image
    Immunohistochemical analysis of paraffin-embedded human breast carcinoma, control (left) or λ phosphatase-treated (right), using Phospho-HSP27 (Ser82) (D1H2F6) XP® Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 22 Expand Image
    Immunohistochemical analysis of parafin-embedded human colon carcinoma using Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb in the presence of control peptide (left) or Phospho-c-Jun (Ser73) Blocking Peptide (right).
    Stress and Apoptosis Antibody Sampler Kit: Image 23 Expand Image
    CUT&RUN was performed with PC-12 cells starved overnight and treated with Human β-Nerve Growth Factor (hβ-NGF) #5221 (50 ng/ml) for 2h and either Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb or Rabbit (DA1E) mAb IgG XP® Isotype Control (CUT&RUN) #66362, using CUT&RUN Assay Kit #86652. The enriched DNA was quantified by real-time PCR using rat Lmna promoter primer, rat Cic intron 1 primer and rat Phf17 promoter primer. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin, which is equivalent to one.
    Stress and Apoptosis Antibody Sampler Kit: Image 24 Expand Image
    Immunohistochemical analysis of paraffin-embedded mouse colon using Phospho-p38 MAPK (Thr180/Tyr182) (D3F9) XP® Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 25 Expand Image
    Immunohistochemical analysis of paraffin-embedded 293T cells untreated (left) or UV-treated (right) using Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 26 Expand Image
    Confocal immunofluorescent analysis of HeLa cells, untreated (left) or treated with Staurosporine #9953 (right), using Cleaved PARP (Asp214) (D64E10) XP® Rabbit mAb (green). Actin filament were labeled with DY-554 phalloidin. Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).
    Stress and Apoptosis Antibody Sampler Kit: Image 27 Expand Image
    Confocal immunofluorescent analysis of HT-29 cells, untreated (left) or UV-treated (right), using Phospho-p53 (Ser15) (16G8) Mouse mAb (green). Actin filaments have been labeled with Alexa Fluor® 555 phalloidin (red).
    Stress and Apoptosis Antibody Sampler Kit: Image 28 Expand Image
    Immunohistochemical analysis of paraffin-embedded mouse lung using Phospho-HSP27 (Ser82) (D1H2F6) XP® Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 29 Expand Image
    Immunohistochemical analysis of paraffin-embedded human lung carcinoma using Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 30 Expand Image
    Immunohistochemical analysis of paraffin-embedded 293T cell pellets, untreated (left) or UV-treated (right), using Phospho-p38 MAPK (Thr180/Tyr182) (D3F9) XP® Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 31 Expand Image
    Flow cytometric analysis of Jurkat cells, untreated (blue) or treated with Etoposide #2200 (25 uM, 18 hr; green) using Cleaved PARP (Asp214) (D64E10) XP® Rabbit mAb (solid lines) or concentration-matched Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (dashed lines). Anti-rabbit IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 488 Conjugate) #4412 was used as a secondary antibody.
    Stress and Apoptosis Antibody Sampler Kit: Image 32 Expand Image
    Flow cytometric analysis of HT-29 cells, untreated (blue) or UV-treated (green), using Phospho-p53 (Ser15) (16G8) Mouse mAb compared to a nonspecific negative control antibody (red).
    Stress and Apoptosis Antibody Sampler Kit: Image 33 Expand Image
    Immunohistochemical analysis of paraffin-embedded mouse embryo, using Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb in the presence of control peptide (left) or Cleaved Caspase-3 (Asp175) Blocking Peptide (#1050) (right).
    Stress and Apoptosis Antibody Sampler Kit: Image 34 Expand Image
    Immunohistochemical analysis of paraffin-embedded HeLa cell pellets, control (left) or UV-treated (right), using Phospho-HSP27 (Ser82) (D1H2F6) XP® Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 35 Expand Image
    Confocal immunofluorescent analysis of mouse small intestine, untreated (left) or treated with λ-phosphatase (right), using Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb #3270 (green). Actin filaments have been labeled with DY-554 phalloidin (red). Samples were mounted in ProLong® Gold Antifade Reagent with DAPI #8961 (blue).
    Stress and Apoptosis Antibody Sampler Kit: Image 36 Expand Image
    Immunohistochemical analysis using Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb on SignalSlide® Cleaved Caspase-3 IHC Controls #8104 (paraffin-embedded Jurkat cells, untreated (left) or etoposide-treated (right)).
    Stress and Apoptosis Antibody Sampler Kit: Image 37 Expand Image
    Immunohistochemical analysis of paraffin-embedded human lung carcinoma using Phospho-HSP27 (Ser82) (D1H2F6) XP® Rabbit mAb in the presence of control peptide (left) or antigen-specific peptide (right).
    Stress and Apoptosis Antibody Sampler Kit: Image 38 Expand Image
    Confocal immunofluorescent analysis of HeLa cells, untreated (left) or anisomycin-treated (right), using Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb (green). Actin filaments have been labeled with DY-554 phalloidin (red).
    Stress and Apoptosis Antibody Sampler Kit: Image 39 Expand Image
    Confocal immunofluorescent analysis of COS cells, untreated (left) or anisomycin-treated (right) using Phospho-p38 MAPK (Thr180/Tyr182) (D3F9) XP® Rabbit mAb (green). Actin filaments have been labeled with DY-554 phalloidin (red).
    Stress and Apoptosis Antibody Sampler Kit: Image 40 Expand Image
    Immunohistochemical staining of paraffin-embedded mouse embryo, showing cytoplasmic localization in apoptotic cells, using Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 41 Expand Image
    Immunohistochemical analysis of paraffin-embedded human prostate carcinoma using Phospho-HSP27 (Ser82) (D1H2F6) XP® Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 42 Expand Image
    Flow cytometric analysis of HeLa cells, untreated (blue) or UV treated (green), using Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 43 Expand Image
    Flow cytometric analysis of Jurkat cells, untreated (blue) or treated with Anisomycin (25µM, 30 min; green) using Phospho-p38 MAPK (Thr180/Tyr182) (D3F9) XP® Rabbit mAb (solid lines) or concentration-matched Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (dashed lines). Anti-rabbit IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 488 Conjugate) #4412 was used as a secondary antibody.
    Stress and Apoptosis Antibody Sampler Kit: Image 44 Expand Image
    Confocal immunofluorescent analysis of C2C12 cells, untreated (left) or treated with λ phosphatase (middle), and NIH/3T3 cells (right) using Phospho-HSP27 (Ser82) (D1H2F6) XP® Rabbit mAb (green). Actin filaments were labeled with DY-554 phalloidin (red). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye). Negative staining in NIH/3T3 cells is in agreement with the observation that NIH/3T3 cells do not express HSP27 under basal conditions (5,7).
    Stress and Apoptosis Antibody Sampler Kit: Image 45 Expand Image
    Chromatin immunoprecipitations were performed with cross-linked chromatin from PC-12 cells starved overnight and treated with Human β-Nerve Growth Factor (hβ-NGF) #5221 (50 ng/ml) for 2h and either Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb or c-Jun (60A8) Rabbit mAb #9165, using SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005. DNA Libraries were prepared using SimpleChIP® ChIP-seq DNA Library Prep Kit for Illumina® #56795. The figure shows binding across Dclk1, a known target gene of both Phospho-c-Jun and c-Jun (see additional figures containing ChIP-qPCR data). For additional ChIP-seq tracks, please download the product datasheet.
    Stress and Apoptosis Antibody Sampler Kit: Image 46 Expand Image
    Flow cytometric analysis of HeLa cells, untreated (blue) or UV-treated (green), using Phospho-HSP27 (Ser82) (D1H2F6) XP® Rabbit mAb.
    Stress and Apoptosis Antibody Sampler Kit: Image 47 Expand Image
    Chromatin immunoprecipitations were performed with cross-linked chromatin from PC-12 cells starved overnight and treated with Human β-Nerve Growth Factor (hβ-NGF) #5221 (50 ng/ml) for 2h and either Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb or c-Jun (60A8) Rabbit mAb #9165, using SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005. DNA Libraries were prepared using DNA Library Prep Kit for Illumina® (ChIP-seq, CUT&RUN) #56795. The figure shows binding across chromosome 2 (upper), including Dclk1 (lower), a known target gene of both Phospho-c-Jun and c-Jun (see additional figures containing ChIP-qPCR data).
    Stress and Apoptosis Antibody Sampler Kit: Image 48 Expand Image
    Chromatin immunoprecipitations were performed with cross-linked chromatin from cells starved overnight and treated with Human β-Nerve Growth Factor (hβ-NGF) #5221 (50 ng/ml) for 2h and either Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb or Normal Rabbit IgG #2729 using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR SimpleChIP® using Rat CCRN4L Promoter Primers #7983, rat DCLK1 promoter primers, and SimpleChIP® Rat GAPDH Promoter Primers #7964. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin, which is equivalent to one.
    Stress and Apoptosis Antibody Sampler Kit: Image 49 Expand Image
    Confocal immunofluorescent images of HT-29 cells, untreated (left) or Staurosporine #9953 treated (right) labeled with Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb (green). Actin filaments have been labeled with Alexa Fluor® 555 phalloidin #8953 (red). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).
    Stress and Apoptosis Antibody Sampler Kit: Image 50 Expand Image
    Flow cytometric analysis of Jurkat cells, untreated (blue) or treated with etoposide #2200 (green), using Cleaved Caspase-3(Asp175) (5A1E) Rabbit mAb compared to a nonspecific negative control antibody (red).