COVID-19の影響について | 詳細はこちら >>


結合パートナー 結合の影響 Akt活性への影響 参考文献
GAPDH 活性化したAktと結合し、その脱リン酸化を制限 促進 Jacquin, M.A. et al. (2013) Cell Death Differ. 20, 1043–1054.
Jade-1 結合してAktキナーゼ活性を阻害 抑制 Zeng, L. et al. (2013) Cancer Res. 73, 5371–5380.
Mst1 結合してAktキナーゼ活性を阻害 抑制 Cinar, B. et al. (2007) EMBO J. 26, 4523–4534.
Jang, S.W. et al. (2007) J. Biol. Chem. 282, 30836–30844.
ArgBP2γ 結合して、AktとPAK1のアダプターとして機能 N/A Yuan, Z.Q. et al. (2005) J. Biol. Chem. 280, 21483–21490.
CBP AktはCBPと結合してリン酸化し、CBP活性を調節 N/A Liu, Y. et al. (2013) FEBS Lett. 587, 847–853.
PP1 Aktと結合し、AktのThr450を脱リン酸化 抑制 Xiao, L. et al. (2010) Cell Death Differ. 17, 1448–1462.
PLCγ1 AktはPLCγ1と結合してリン酸化 N/A Wang, Y. et al. (2006) Mol. Biol. Cell 17, 2267–2277.
Skp2 AktはSkp2と結合してリン酸化し、Skp2活性を調節 N/A Lin, H. et al. (2009) Nat. Cell Biol. 11, 420–432.
Gao, D. et al. (2009) Nat. Cell Biol. 11, 397–408
PEA-15 AktはPEA-15と結合してリン酸化し、抗アポトーシス機能を制御 N/A Trencia, A. et al. (2003) Cell. Biol. 23, 4511–4521.
PHF20 AktはPHF20と結合してリン酸化し、細胞内局在を制御 N/A Park, S. et al. (2012) J. Biol. Chem. 287, 11151–11163.
PHLPP PHLPPはAktに結合し、AktのSer473を脱リン酸化 抑制 Gao, T. et al. Mol. Cell 18, 13–24.
FKBP5 Aktと結合し、PHLPPとのAktの相互作用の足場として機能 抑制 Pei, H. et al. (2009) Cancer Cell 16, 259–266.
CKIP-1 Aktと結合し、Akt リン酸化を阻害 抑制 Tokuda, E. et al. (2007) Cancer Res. 67, 9666–9676.
Ras AktのPH (pleckstrin homology) ドメインと相互作用 促進 Yue, Y. et al. (2004) J. Biol. Chem. 279, 12883–12889.
BTBD10 Aktと結合し、脱リン酸化を阻害 促進 Nawa, M. et al. (2008) Cell Signal. 20, 493–505.
KCTD20 Aktと結合し、脱リン酸化を阻害 促進 Nawa, M. et al. (2013) BMC Biochem. 14, 27.
PAR-4 AktはPAR-4と結合してリン酸化し、アポトーシス促進性活性を阻害 N/A Goswami, A. et al. (2005) Mol. Cell 20, 33–44.
Tpl2 AktはTpl2と結合してリン酸化 N/A Kane, L.P. et al. (2002) Mol. Cell. Biol. 22, 5962–5974.
SirT2 SirT2はAktと相互作用し、Aktの適切な活性化に必要 促進 Ramakrishnan, G. et al. (2014) J. Biol. Chem. 289, 6054–6066.
NPM AktのPH (Pleckstrin domain) に結合し、細胞生存を促進 N/A Lee, S.B. et al. (2008) Proc. Natl. Acad. Sci. USA 105, 16584–16589.
Kwon, I.S. et al. (2010) BMB Rep. 43, 127–132.
eEF1A Aktと相互作用し、Aktリン酸化に寄与 促進 Pecorari, L. et al. (2009) Mol. Cancer 8, 58.
CLIPR-59 Aktのキナーゼドメインと相互作用し、Aktの細胞内局在を調節 N/A Ding, J. et al. (2009) Mol. Cell. Biol. 29, 1459–1471.
CNK1 結合してAkt活性を増強 促進 Fritz, R.D. et al. (2010) Oncogene 29, 3575–3582.
Phafin2 リソソームでAktと結合し、オートファジーを調節 N/A Matsuda–Lennikov, M. et al. (2014) PLoS One 9, e79795.
Btk Aktと結合し、Aktのリン酸化を促進 促進 Lindvall, J. et al. (2002) Biochem. Biophys. Res. Commun. 293, 1319–1326.
β-Parvin Aktと結合し、ILKとAktとの相互作用を妨害 抑制 Kimura, M. et al. (2010) J. Cell Sci. 123, 747–755.
NS1 AktのPH (pleckstrin homology) ドメインと相互作用 促進 Matsuda, M. et al. (2010) Biochem. Biophys. Res. Commun. 395, 312–317.
α-Synuclein Aktと結合し、Akt活性化を促進 促進 Chung, J.Y. et al. (2011) Neurosignals 19, 86–96.
RACK1 RACK1は、PP2Aとの複合体でAktと相互作用 抑制 Li, G. et al. (2012) Nat. Commun. 3, 667.
ProF Aktと結合し、Aktの細胞内局在に影響 N/A Fritzius, T. et al. (2006) Biochem. J. 399, 9–20.
p27 Kip1 Aktはp27と結合してリン酸化 N/A Liang, J. et al. (2002) Nat. Med. 8, 1153–1160.
Shin, I. et al. (2002) Nat. Med. 8, 1145–1152.
FoxA2/HNF3β AktはFoxA2/HNF3βと結合してリン酸化 N/A Wolfrum, C. et al. (2003) Proc. Natl. Acad. Sci. USA 100, 11624–11629.
DNMT1 AktはDNMT1と結合してリン酸化 N/A Estève, P.O. et al. (2011) Nat. Struct. Mol. Biol. 18, 42–48.

CSTはこの表を作成してくださった、ヨーク大学のMichael Scheid博士 (オンタリオ州トロント) に感謝いたします。


  1. Ding, Z. et al. (2006) A retrovirus-based protein complementation assay screen reveals functional AKT1-binding partners. Proc. Natl. Acad. Sci. U.S.A. 103, 15014–15019.
  2. Lin, H.K. et al. (2002) Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J. 21, 4037–4048.
  3. Anai, M. et al. (2005) A novel protein kinase B (PKB)/AKT-binding protein enhances PKB kinase activity and regulates DNA synthesis. J. Biol. Chem. 280, 18525–18535.
  4. Mitsuuchi, Y. et al. (1999) Identification of a chromosome 3p14.3-21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene 18, 4891–4898.
  5. Zhang, P. et al. (2005) Regulated association of protein kinase B/Akt with breast tumor kinase. J. Biol. Chem. 280, 1982–1991.
  6. Fuhrmann, G. et al. (2001) Cdc25A phosphatase suppresses apoptosis induced by serum deprivation. Oncogene 20, 4542–4553.
  7. Miyata, Y. et al. (2004) CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol. Cell. Biol. 24, 4065–4074.
  8. Maira, S.M. et al. (2001) Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 294, 374–380.
  9. Bauer, P.M. et al. (2003) Compensatory phosphorylation and protein-protein interactions revealed by loss of function and gain of function mutants of multiple serine phosphorylation sites in endothelial nitric-oxide synthase. J. Biol. Chem. 278, 14841–14849.
  10. Remy, I. et al. (2004) Regulation of apoptosis by the Ft1 protein, a new modulator of protein kinase B/Akt. Mol. Cell. Biol. 24, 1493–1504.
  11. Jahn, T. et al. (2002) Role for the adaptor protein Grb10 in the activation of Akt. Mol. Cell. Biol. 22, 979–991.
  12. Rane, M.J. et al. (2003) Heat shock protein 27 controls apoptosis by regulating Akt activation. J. Biol. Chem. 278, 27828–27835.
  13. Persad, S. et al. (2001) Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J. Biol. Chem. 276, 27462–27469.
  14. Cenni, V. et al. (2003) Interleukin-1-receptor-associated kinase 2 (IRAK2)-mediated interleukin-1-dependent nuclear factor kappaB transactivation in Saos2 cells requires the Akt/protein kinase B kinase. Biochem. J. 376, 303–311.
  15. Kim, A.H. et al. (2002) Akt1 regulates a JNK scaffold during excitotoxic apoptosis. Neuron 35, 697–709.
  16. Héron-Milhavet, L. et al. (2006) Only Akt1 is required for proliferation, while Akt2 promotes cell cycle exit through p21 binding. Mol. Cell. Biol. 26, 8267–8280.
  17. van den Heuvel, A.P. et al. (2002) Binding of protein kinase B to the plakin family member periplakin. J. Cell. Sci. 115, 3957–3966.
  18. Ahn, J.Y. et al. (2004) PIKE (phosphatidylinositol 3-kinase enhancer)-A GTPase stimulates Akt activity and mediates cellular invasion. J. Biol. Chem. 279, 16441–16451.
  19. Pim, D. et al. (2005) Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene 24, 7830–7838.
  20. Figueroa, C. et al. (2003) Akt2 negatively regulates assembly of the POSH-MLK-JNK signaling complex. J. Biol. Chem. 278, 47922–47927.
  21. Sun, L. et al. (2004) Akt binds prohibitin 2 and relieves its repression of MyoD and muscle differentiation. J. Cell. Sci. 117, 3021–3029.
  22. Reusch, H.P. et al. (2001) Regulation of Raf by Akt controls growth and differentiation in vascular smooth muscle cells. J. Biol. Chem. 276, 33630–33637.
  23. Conery, A.R. et al. (2004) Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat. Cell Biol. 6, 366–372.
  24. Remy, I. et al. (2004) PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat. Cell Biol. 6, 358–365.
  25. Laine, J. et al. (2000) The protooncogene TCL1 is an Akt kinase coactivator. Mol. Cell 6, 395–407.
  26. Pekarsky, Y. et al. (2000) Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc. Natl. Acad. Sci. U.S.A. 97, 3028–3033.
  27. Du, K. et al. (2003) TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300, 1574–1577.



Powered By OneLink