Render Target: SSR
Render Timestamp: 2024-12-10T20:01:34.003Z
Commit: 611277b6de3cd1bb065350b6ef8d63df412b7185
XML generation date: 2024-04-05 20:22:17.708
Product last modified at: 2024-06-27T13:36:07.311Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Blocking Peptide
PDP - Template ID: *******6db2f4c

AMPKβ1/2 Blocking Peptide #1074

Pricing & Additional Information

To learn more about our Blocking Peptides, including pricing or custom products, please submit a product inquiry request.

Submit Blocking Peptide Inquiry

Important Ordering Details

Custom Ordering Details: This product is assembled upon order. Please allow two-four weeks for your product to be processed.

    Product Information

    Product Usage Information

    Use as a blocking reagent to evaluate the specificity of antibody reactivity in dot blot protocols.

    Storage

    Supplied in 20 mM potassium phosphate (pH 7.0), 50 mM NaCl, 0.1 mM EDTA, 1 mg/ml BSA and 5% glycerol. 1% DMSO. Store at –20°C.

    Product Description

    This peptide is used specifically to block AMPKβ 1/2 (57C12) Rabbit mAb #4150 reactivity.

    Quality Control

    The quality of the peptide was evaluated by reversed-phase HPLC and by mass spectrometry. The peptide blocks AMPKβ1/2 (57C12) Rabbit mAb #4150 by dot blot.

    Background

    AMP-activated protein kinase (AMPK) is highly conserved from yeast to plants and animals and plays a key role in the regulation of energy homeostasis (1). AMPK is a heterotrimeric complex composed of a catalytic α subunit and regulatory β and γ subunits, each of which is encoded by two or three distinct genes (α1, 2; β1, 2; γ1, 2, 3) (2). The kinase is activated by an elevated AMP/ATP ratio due to cellular and environmental stress, such as heat shock, hypoxia, and ischemia (1). The tumor suppressor LKB1, in association with accessory proteins STRAD and MO25, phosphorylates AMPKα at Thr172 in the activation loop, and this phosphorylation is required for AMPK activation (3-5). AMPKα is also phosphorylated at Thr258 and Ser485 (for α1; Ser491 for α2). The upstream kinase and the biological significance of these phosphorylation events have yet to be elucidated (6). The β1 subunit is post-translationally modified by myristoylation and multi-site phosphorylation including Ser24/25, Ser96, Ser101, Ser108, and Ser182 (6,7). Phosphorylation at Ser108 of the β1 subunit seems to be required for AMPK activation, while phosphorylation at Ser24/25 and Ser182 affects AMPK localization (7). Several mutations in AMPKγ subunits have been identified, most of which are located in the putative AMP/ATP binding sites (CBS or Bateman domains). Mutations at these sites lead to reduction of AMPK activity and cause glycogen accumulation in heart or skeletal muscle (1,2). Accumulating evidence indicates that AMPK not only regulates the metabolism of fatty acids and glycogen, but also modulates protein synthesis and cell growth through EF2 and TSC2/mTOR pathways, as well as blood flow via eNOS/nNOS (1). This peptide is used specifically to block AMPKβ 1/2 (57C12) Rabbit mAb #4150 reactivity.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.